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Abstract

3D Multi Object Tracking (MOT) is essential for the safe deployment of self-driving
vehicles. While major progress has been made in 3D object detection and machine-
learned tracking approaches, real time 3D MOT remains a challenging problem
in dense urban scenes. Commercial deployment of self-driving cars requires high
recall and redundancy often achieved by using multiple sensor modalities. While
existing approaches have been shown to work well with a fixed input modality
setting, it is generally hard to reconfigure the tracking pipeline for optimal perfor-
mance with changes in the input sources. In this paper, we propose a generalized
learnable framework for multi-modal data association leveraging Transformers (25).
Our method encodes tracks and observations as embeddings using joint attention
to capture spatio-temporal context. From these embeddings, pairwise similarity
scores can be computed between tracks and observations, which are then used to
classify track-observation association proposals. We experimentally demonstrate
that our data-driven approach achieves better performance than heuristics-based
solutions on our in-house large-scale dataset and show that it is generalizable to
different combinations of input modalities without any specific hand-tuning. Our
approach also has real-time performance even with a large number of inputs.

1 Introduction

3D Multi Object Tracking (MOT) is a critical problem that needs to be solved to safely deploy
autonomous driving systems (16; 15; 11). It is largely modeled as a tracking by detection problem,
where object proposals are generated by upstream object detectors for each time step, while the
tracking system links the detections across time steps and updates the states of each track (27).
Although there have been significant advancements in object detection (9; 14) and machine learned
tracking (17; 15; 32) in recent years, the MOT problem remains challenging for several reasons.
Objects in dense urban environments often occlude each other which causes missing detections that
require tracking to fill in these gaps. Moreover, object appearance changes over time making object
re-identification harder. Finally, machine learned detectors don’t have perfect recall, missing objects
from time to time, while autonomous driving systems must have near perfect recall for safe operation.
This goal can be achieved by multi-modal fusion during the tracking step to take advantage of the
needed redundancy from different observation sources while maintaining a consensus representation
of the agents around the ego vehicle.

The multi object tracking problem can be divided into two main stages (see (b) and (c) in Fig. 1). The
first is Data Association, where we need to decide for each observation in the current time step which
track it belongs to, or if it belongs to a new object that was not tracked before. The second problem is
State Estimation, where we take the observations associated with each track in the current time step
to update the state representation of that track.
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Figure 1: Overview of our approach to the 3D MOT problem. (a) Observation Generation process
from multi-modal sensor inputs. Observations from different modalities or combination of modalities
are labeled with different colors. (b) Data Association Stage. Each track (labeled with a unique color)
is represented by a sequence of multi-modal observations (shown as unique shapes ■ ● ◆). (c)
State Estimation Stage. ▶ represents the updated track state, while ▷ represents the track state from
prediction only.

This paper focuses on solving the Data Association problem in a multi-modal setting. Our approach
is inspired by recent advances in natural language processing (25) and machine learned tracking
(11). We use transformers to encode tracks, represented by a collection of previously associated
observations, and the observations in the current time step. To demonstrate how our method works
with multiple modalities, in our experiments the observations come from multiple upstream object
detectors based on a single or a combination of sensor modalities, as well as a geometry-based
LiDAR pipeline. We train our model using supervised contrastive loss (12) to generate an embedding
for each track and observation in a metric space where the cosine similarity of the embeddings of
track - observation pairs indicates how likely they should be associated together. The final data
association assignments can be formulated as a track-observation proposal classification problem
based on these scores, which can be solved efficiently despite the large amount of observations from
multiple modalities.

A key advantage of our approach is that it is a general framework for data association that can be
easily extended to multiple modalities without changing the architecture of the model, making it
simple to add new modalities and achieve the redundancy and recall needed for fully autonomous
driving. Another benefit of this approach is the ability to test different sensor architectures and sensor
sets, without changes to the model or methodology. Adapting to a new sensor suite requires only the
data be re-annotated in order to train a new model.

In summary, our contributions are the following:

• We formulate a general framework for the data association problem using Transformers and
supervised contrastive loss.

• Our method is agnostic to input modality combination and class of the tracked objects. It’s
designed to have real-time inference performance and runs in ∼8msec for typical input sizes seen
in production.

• We analyze the performance of our method through ablation studies and show that it outperforms
heuristics based data association baseline which is generally used in production systems in key
metrics on our large-scale in-house dataset.

2 Related Work

Online Multi-Object Tracking. Recently significant progress has been made in the multi-object
tracking (MOT) area, especially in visual tracking (30; 26; 1; 29). Online 3D MOT (28; 32; 10),
however, remains to be a challenging problem, especially in the context of multi-modal sensor fusion.
Since most 3D MOT problems are modeled as tracking by detection, the performance is heavily
affected by detection quality. At the same time, discriminative appearance modeling as well as the
utilization of the spatial-temporal information are also crucial factors for the tracking quality.

Liang et al. (15) and Yin et al. (32) tackle the 3D detection and tracking problem as a whole and
achieve improved tracking results by propagating observation information from raw sensor data. Both
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systems, however, take the raw LiDAR spins as a single source of sensor input and would need to be
heavily reconfigured to accommodate multi-model sensor inputs in the detection module.

There is a stream of work focusing on improving the discriminative power of appearance features
(13; 28; 34). While good performance has been achieved, the dominance of the appearance features
leaves the system error prone in situations when the input signals are sparse, e.g. under occlusion and
at long distances, and makes it harder to scale and generalize to multiple sensor inputs.

Various works have been done to take advantage of the spatial context and temporal motion cues for
data association (31; 20; 6; 15; 17). (15; 17) model the track temporal states using LSTMs, which are
updated every cycle with associated new observations. This is error-prone when noisy associations
are made, polluting the latent track representations. To capture the spatial context of observations
and tracks, Hu et al. (10) and Poschmann et al. (20) model the association problem as a learned
linear programming problem and a factor graph respectively. However, both use filtering based on the
state estimation for track representation, which makes it infeasible to rectify incorrect associations
from past time steps, and also makes their method less robust to observation noise. In contrast, we
represent the track as a sequence of raw observations and then use a PointNet (22) to robustly encode
the sequence and capture the motion information in latent space.

Transformers in Tracking. Transformer architecture has become dominant in many natural language
processing (NLP) tasks. Due to the self-attention module that aggregates information from the entire
sequence, it has achieved a clear performance edge over RNNs in processing long sequences and also
gained popularity in many vision tasks, such as image generation (18), image recognition (7), object
detection (2) and visual tracking (11; 26).

Hung et al. (11) successfully incorporated the transformer based attention mechanism in the visual
MOT formulation. In contrast to their work, which operates only in the image space, we apply
the transformer to multi-modal data and utilize supervised contrastive loss (12) for similarity score
learning, which makes it possible for each track to be robustly associated with multiple observations
from current time step. Also thanks to our PointNet-based track encoding mechanism, the final data
association model is still light-weight and efficient, and achieves real-time performance even with
significantly increased amount of observations from multiple modalities.

Early vs Late Sensor Fusion. Early fusion based 3D object detectors have achieved tremendous
success in advancing detection quality by directly fusing image and LiDAR data together (14; 21; 3).
They, however, still face difficulty in guaranteeing the recall level required by self-driving cars if used
as the single source of observation. For example, a detector might miss objects unseen in the training
set but a clustering based geometric LiDAR pipeline could help pick them up. On the contrary, late
fusion approaches (33; 4; 5; 23) take as inputs all observations from upstream systems and exploit
complementary information from different observation sources while maintaining consensus agent
representations. Traditional late fusion methods (4; 5) rely on carefully hand-tuned motion models to
update track states, and as a result, heavy parameter tuning and heuristics are required to adapt to
different observation properties. Instead, our transformer-based data association model implicitly
captures motion cues and adjusts to the modality properties directly from data.

3 Data Association with Transformers

The input to our system is a set of 3D object proposals that could come from different sources over
multiple time steps, hereby called as observations {Oi ∈ Rdo∣∀i ∈ [1, No]} where No is the total
number of observations in the current time step. The tracker also keeps a list of live tracks over time
{Tj∣j ∈ [1, Nt]}, where Nt is the total number of tracks in the current time step. Our task is to
associate new observations that arrive in the current time step to existing tracks. We refer to this
problem as the data association task. Our overall approach is to learn feature embedding networks
to embed each track and each observation in a common vector space with dimension dc: Rdc . We
train the embedding networks in such a way that pairwise association scores can be obtained by
taking cosine similarity between the track and observation embeddings, which gives us a similarity
matrix RNt×No . The next sections go into details on how we learn the embeddings for tracks and
observations.
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Figure 2: Overview of our model architecture For each track, we collate its past associated
observations, and pass them through a PointNet encoder to produce a track embedding. In parallel,
we collate all observations in the current time step and encode each of them with a MLP. We pass the
track and observation embeddings through the joint attention module (based on self-attention layers).
Finally, we extract the track and observation embeddings from the output of the joint attention module
and compute cosine similarity between each track-observation pair to obtain a similarity matrix.

3.1 Observation Embeddings

As mentioned earlier, the observations could come from multiple sources. Our approach is designed
to be agnostic to the properties of the input source. We could have observations from a geometric
pipeline (e.g. clustered LiDAR points as obstacles) or from machine learned object detectors (e.g.
(21; 3; 24)) that are trained to represent the true extent of objects. Also, the approaches generating
these observations could have different degrees of precision and recall. Our embedding approach
needs to cater to all of these diverse properties. We discuss the observations we use in Sec. 4.2 and
show our method can work on any combination of them with high accuracy.

We represent each observation by its box and motion attributes:
{cx, cy, cz, ex, ey, ez, θ, vx, vy, vz, L,∆t} where ci: center coordinates, ei: box extent, θ:
yaw, vi: velocity, L: class label of the input observation and ∆t is relative timestamp of the
observation from the current time step. Not all input sources would generate all these attributes and
we zero out entries from respective sources not providing the attribute. We learn a neural network
(Ro∶R

do → Rdc) which maps the input observation vectors with dimension do to the embedding
vector space Rdc . We’ve experimented with different observation embedding networks as discussed
in the experiments section 4.1. Our optimal architecture (in terms of accuracy vs memory/latency
tradeoff) is a multilayer perceptron (MLP) style architecture.

3.2 Track Embeddings

A track is a representation of a particular object over time. Each track {Tt∣∀t ∈ [1, Nt]} is
represented by all the observations that are associated with it in the past K time steps: {Ok,i∣∀k ∈
[T −K,T − 1], i ∈ [1, Nk

o ]}, where Nk
o is the number of observations associated with the track at

the kth time step. Using these, we want to learn a feature embedding network and obtain a vector
representation of the track (ft ∈ Rdc ). Our embedding approach uses all the observations associated
with the track in the past time steps such that it’s able to learn track properties like motion and
extent which require multiple time steps to obtain. We leverage a PointNet style architecture (22)
to determine the track embeddings. More specifically, the input to our embedding network is a list
of observation vectors {Ok,i ∈ Rdo}. We pass each observation independently through the same
multilayer perceptron (MLP) followed by a pooling layer to aggregate the features to generate the
embedding for each track.
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3.3 Joint attention mechanism

To produce meaningful similarity scores, we would like objects (tracks and observations) which
have similar attributes (e.g. spatial location, velocity, extent) to have similar feature embedding.
Towards this goal, we adopt the self-attention mechanism from the Transformer architecture, which
has been shown to capture the dependencies between input entities effectively (11; 25). In addition,
since the feature embeddings for all tracks {ft}Nt

t=1 and all observations {fo}No

o=1 (both in Rdc) are
generated independently, we stack the feature embeddings for each track and observation together
before passing them through a set of self-attention layers to generate output embedding vectors foute

as follows:

f
out
e =∑

k

softmax(Qe ⋅K
T
k√

dk
)Vk (1)

where Qe = Wqfe, Kk = Wkfe and Vk = Wvfe represent the query, key and value tensors in
the self-attention formulation ((25)) and fe is the stacked feature embeddings from the track and
observation embeddings.

Intuitively, this would make the feature embedding of each observation and track dependent on
all other observations and tracks. As shown in Sec. 4.6.1, the joint attention mechanism leads to
significant improvement in model performance. We extract the first Nt and the last No vectors after
the joint attention layers as the final embedding vectors for each track and observation respectively.
Our final network architecture is shown in Fig 2.

Computational complexity. Our approach can handle hundreds of observations with history from
multiple past time steps at 5Hz due to our novel encoding scheme using a combination of PointNet
(22) and Transformers (25). Given the number of past observations are Npo, number of observations
at the current time step is No, and number of tracks in the current time step is Nt, the compu-
tational complexity of our track embedding module is O(Npo), while that of the joint attention
module is O((Nt +No)2). In contrast, the complexity for the approach discussed in (11) would be
O((Npo +No)2), since all observations in past and current timestamp are fed to the transformer at
the same time to enable soft attention. Since Nt is usually much smaller than Npo, our approach is
more efficient and achieves real-time performance.

3.4 Data association with occlusion reasoning

Our final goal is to determine which of the observations in the new time step are associated with
which existing track. Having generated the feature embeddings for the tracks and observations, we
take cosine similarity between them to generate pairwise association scores leading to a similarity
matrix (RNt×No ).

As part of ground truth generation (details in 4.1), we have information of which observations are
associated to the same track for each time step. We get on average hundreds of observations in
each time step and roughly 2-10 observations associate to each track. We leverage the supervised
contrastive loss (12) which has been shown to work significantly better than the conventional cross
entropy loss especially in cases of large number of negative examples as in our case. The formulation
for the supervised contrastive loss is the following:

Lsup
=∑

i∈I

−1

∣P (i)∣ ∑
p∈P (i)

log
exp(fi ⋅ fp/τ)

∑a∈A(i) exp(fi ⋅ fa/τ) (2)

where fi denotes the embedding for the ith track, P (i) are all observations associated to ith track,
A(i) denotes all observations (associated or not) in the vicinity of the ith track and τ ∈ R+ is a scalar
temperature parameter. We apply the above supervised contrastive loss between track-observation
(Lt) and observation-observation pairs (Lo). Lo helps with creating new tracks in the current time
step. For Lo, fi denote the ith observation in the current time step.

Ltot = Lt + λ ⋅ Lo (3)

5



where λ is the loss balancing factor between the observation-observation and track-observation loss
terms.

In each time step, it is not necessary for each observation to get associated with an existing track, for
example when a new track is observed for the first time, or when there are false positive observations
present. Similarly, an existing track could get occluded in the current time step and as such won’t
have any new observation (as shown in Fig 1). To cater to both these cases, we learn a fixed occlusion
state (focc) similar to (11). The occlusion state is denoted by a all -1 vector ({−⃗1} ∈ Rdo ) and passed
through the same observation embedding network as described in 3.1 to obtain focc. For tracks
occluded in the current time step, we assign its GT association to be true to the occlusion state and
false with every other observation. This helps having supervision for training embeddings of occluded
tracks. Similarly, observations which aren’t supposed to be associated with any existing track have
false GT association with all tracks. Combined with the contrastive loss, the model learns to robustly
assign no new associations during occlusion, instead of enforcing wrong associations.

4 Experiments

4.1 Dataset

Figure 3: Overview of our approach to GT genera-
tion: Observations from multiple sources are generated,
in this figure we show the LiDAR obstacles as an ex-
ample with blue boxes. The human annotated boxes
are shown in gray. We compute overlap of input obser-
vations and GT boxes to determine GT association of
observations.

Ground truth generation: We used a tempo-
ral in-house dataset for our experiments. The
source dataset consists of high quality human
annotated 3D cuboids and is recorded at 5Hz on
Autonomous Vehicles equipped with LiDARs,
Cameras and Radars. As explained earlier, we
get input observations from multiple sources in
the tracking pipeline. The required ground truth
for the data association task is a list of asso-
ciations between these input observations and
the human annotated 3D cuboids. The source
of these observations could also change with
time, for example release of a new version of
upstream object detector or addition of a com-
pletely new input source. Hence it would be
expensive to get the annotations of which ob-
servations belong to the same track every time
there is a change. We instead auto-label the GT
association of observations using the human an-
notated 3D cuboids. More specifically, we run
the upstream pipelines that generate the observations and decide their association based on 3D IOU
overlap with the human annotated 3D cuboids as shown in Figure 3. This also allows us to re-curate
datasets easily whenever there is change in the input observations.

Our dataset consists of 52,839 scenes (with 80/10/10% train, val, test splits) and each scene has 5
time steps.

4.2 Observation Generation

In this paper, we experiment with observations from the following sources:

• LiDAR Obstacles (LO): Boxes output from a LiDAR processing pipeline which clusters the
LiDAR pointcloud and generates obstacles for an object (sometimes with the help of Vision
segmentation results). While this pipeline has high recall and ensures almost all LiDAR points are
included, it tends to over-segment and can generate multiple boxes for the same object.

• Object Detections: Boxes output from in-house machine learned detector using LiDAR and/or
Vision inputs similar to those studied in literature (21; 3; 24). In our experiment, we included the
following two detectors: one using LiDAR-only inputs (LD) and another using both LiDAR and
Vision inputs (L+V). These detectors are generally trained to represent the full extent of the object.
We don’t assume any level of precision/recall from the upstream ML detectors.
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4.3 Implementation details

We implemented the proposed architecture in PyTorch (19). All models were trained on AWS using
Tesla V100-SXM2-16GB GPUs (all runs were trained on 4 instances).

We use observations from K = 3 past time steps to generate the track embeddings unless specified
otherwise in the section. To account for the class imbalance in our dataset, we weigh each class using
the following values in the loss function: wcar = 1.0, wped = 5.0, wcyclist = 10.0. We use τ = 0.07
in Eq 2 and λ = 1.5 in Eq 3 for the supervised contrastive loss setting. We use a neighborhood of
20m around the track’s center for the A(i) term in Eq 2.

4.4 Evaluation metrics

Once we have the pairwise similarity scores between tracks and observations, we compute mAP (as
defined in (8)) for the per class and per modality precision-recall (PR) curves. As we threshold the
similarity scores with the swept values during the PR curve generation, we additionally ensure that
each observation is matched only to the highest scoring track. In Fig. 4, we visualize a handful of
interesting examples and some failure cases.

4.5 Baseline method

Our approach generates a representation for each track (from past associated observations) and for all
the observations in the current time step using which we perform data association. We compare this
to a baseline method that is traditionally used in tracking systems where a Kalman Filter is used for
track state estimation and IOU based scores between track and current frame observations are used
for data association. For each track, we use the Kalman Filter (KF) framework to estimate the state
from the past associated observations. We use all observation types (see Sec. 4.2) as input to the KF
setup. For the track process, we use a constant velocity model and our state space is a 10-dimensional
vector consisting of {c, e, θ, v} where c is the 3D vector for the center coordinates, e is extent vector,
v is velocity vector and θ is yaw. We predict the state of the KF at the timestamp of the current time
step.

Next, we compute 2D Bird-eye view IOU scores between all tracks and observations in the current
time step to determine a similarity matrix (RNt×No ) for each track-observation pair. We use the same
mAP metrics to compare to other model variations.

4.6 Results

4.6.1 Effect of Self-attention Layers

In this section, we evaluate the effect of having self-attention layers (25) in our model architecture.
We have separate embedding networks for tracks and observations. Self-attention layers would allow
for the embeddings to attend to all entities (track and observations) in the current time step. Table 1a
shows the results of having attention layers at multiple places in the model architecture:

• No attention layers: This is the baseline model where we just have the MLP architecture for
observation embedding network and the PointNet for track embedding.

• Attention layers only in observation network: We add attention layers after the MLP layers in
the observation embedding network. This allows observations to attend to each other.

• Joint Attention layers: This is the same architecture as shown in Fig. 2.
• Observation attention + Joint Attention layers: We add self-attention layers in the observation

network as well as after the observation and track embedding and attending to both simultaneously.

We can see that having joint layers gives a significant boost compared to having no attention layers
in the network highlighting their importance. Having joint attention over track and observations is
also quite important compared to just having attention layers in the observation network. Our Joint +
Obs attention network roughly doubles the number of params (52M vs. 27M) and it starts to overfit
leading to some dip in APs.

We also see that our models significantly outperform the baseline Kalman Filter (KF) based approach
that has been traditionally used in tracking systems. KF based tracking pipelines require considerable
hand tuning and customized logic for different cases to achieve optimal performance. In addition, KF
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Model type APall APcar APped APcyc

Kalman Filter 75.32 72.55 93.69 80.25
No attention 94.48 97.37 87.96 77.07
Obs attention 96.02 98.69 87.90 77.22
Joint attn 99.05 99.54 97.83 93.78
Joint & obs attn 98.87 99.51 97.74 92.51

(a) Effect of joint attention. We compare different ways
of using attention. Our Joint attention model clearly out-
performs the model without attention and significantly out-
performs the Kalman Filter baseline. We use all modalities
(see Sec. 4.2) as inputs to the above models.

Modality APL+V APLD APLO

L+V 99.71 N/A N/A
L+V & LD 98.95 99.89 N/A
LD & LO N/A 99.66 96.25
All 99.68 99.90 98.96

(b) Evaluation on different input sources. L+V:
LiDAR+Vision based detector, LD: LiDAR only
detector, and LO: LiDAR obstacles. Each row
signifies the observation sources we trained on.
Results are shown aggregated for all classes and
we use the joint attention model (Sec. 4.6.1).

Table 1: Effect of joint attention and using different input sources
K APall APcar APped APcyc

1 99.02 99.52 97.83 93.94
2 98.92 99.52 97.73 94.66
3 99.08 99.54 98.01 95.00
4 98.85 99.49 97.49 94.85
5 98.94 99.50 97.49 94.26

(a) AP for number of past time steps. We don’t
see significant differences in aggregate AP metric.

Training set % APall APcar APped APcyc

25 98.74 99.40 96.51 89.51
50 98.56 99.34 96.76 90.59
75 98.85 99.45 97.45 91.70
100 99.08 99.54 98.01 94.61

(b) Effect of training dataset size. As expected, our
model performs better when trained on more data, espe-
cially for under-represented object classes like cyclists.

Table 2: AP as a function of number of past time steps and training dataset size

based systems take significant effort to adapt to changes in input sources, while our framework only
requires retraining a model.

4.6.2 Evaluation on different input modalities
No Inference (ms)
50 7.0
100 6.9
250 7.0
500 8.0

1000 12.4

(a)

K Inference (ms)
1 8.1
2 8.2
3 8.3
4 7.9
5 8.1

(b)

Table 3: Inference time (data association
part) by varying #observations in current time
step (3a) and #past time steps used in the
track embedding network (3b) keeping No

fixed. All are measured on a single Tesla
V100-SXM2-16GB GPU. The inference time
increases marginally when doubling the num-
ber of observations. We don’t observe notable
differences varying K.

One of the main contributions of this paper is to
show the ability of our model to work with multi-
ple input sources without much hand tuning of the
parameters. In this section we explore the effect of
having different combinations of input observation
types. For working with different input sources, we
simply need to ensure they are present in our dataset
curation (see Sec. 4.1) and observation vectors are
created as input into the model. No other tuning
was required for optimizing performance.

We show the APs across all class labels in Table 1b
(see modality details in Sec. 4.2). We see that our
model performs effectively for different modality
combinations w/o changes to the model architecture.
We also show that training on additional modality
in some cases helps boost performance on the original modality (see all modalities vs. LD + LO).

4.6.3 Effect of number of past time steps

We hypothesize that incorporating a greater number of past time steps of associated observations will
give a more accurate representation of tracks. Table 2a shows a sweep across K from 1 to 5. We see
similar performance across these different values for K and observe that the inference time does not
significantly change as we increase K (Table 3b), giving room to increase the number of past steps if
necessary. We hypothesize that a higher K will help in cases of fast moving tracks or tracks that are
occluded for some time steps. We leave this exploration for future work.

4.6.4 Evaluation of training dataset size

One of the drawbacks of a heuristics based system is that scaling up the dataset size wouldn’t improve
its performance. It’s desirable that a system improves by feeding in more training data. In this section,
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Figure 4: Qualitative results: Each figure shows the Bird-eye view of the track information and its
surrounding obstacles. (a)-(f) show some success cases, while (g) and (h) show the typical association
errors. Specifically, (a) demonstrates a scenario for moving car, (b) shows a car in dense environment,
and (c) shows that correct associations can be made robustly when the track observations are noisy.
In (d) and (e,f) association results for a cyclist track and pedestrian tracks are shown respectively.

we explore this question and report the model performance (Table 2b) with increasing the size of the
training set. We vary the percentage of training data used while keeping the same entire test set for
reporting results. We see roughly 5 AP points improvement for Cyclists increasing the data from
25% to 100% and improved results for other classes as well.

4.6.5 Real-time inference

We designed the network to have efficient inference w/o compromising on performance in diverse
settings. The number of observations in the current time step could vary a lot depending on the
scene and upstream observation sources. For example, a busy street could generate hundreds of
observations from different road agents. In Table 3a, we analyze the inference time varying the
number of observations in the current time step. We see that the latency of our approach doesn’t
increase significantly by doubling the number of observations and remains within reasonable bounds
for real-time inference.

4.6.6 Qualitative look at success and failure cases

Figure 4 showcases a handful of example cases for our joint attention model. We visualize a variety
of success cases with no errors in (a-f) and a few error cases (g-h). We can see in (f) that our model is
able to reason about the track state from just the LiDAR obstacles which don’t represent the extent of
the Pedestrian well enough and able to associate LiDAR obstacles in current time step w/o having
clear overlap with past associated observations.

We can see from the error cases that false positive associations and the missing associations are all
caused by the small LiDAR obstacles at the track box boundary. This could result from ambiguity in
the ownership of such small obstacles during the GT generation stage as described in Sec. 4.1.

5 Conclusion and Future Work

We presented a novel approach leveraging self-attention mechanism and supervised contrastive loss
for the data association task within multi-object tracking (MOT). We showed that our generic approach
is able to handle multiple input modalities without modality specific changes to the architecture. Our
framework has real-time performance even with a large number of observation inputs. Finally, we
demonstrated that the performance of our data-driven method scales well with increasing the amount
of training data. Our model architecture can easily be extended to other problems within tracking
such as state estimation which remains an area for future work.
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